

ADVANCED GCE

MATHEMATICS Core Mathematics 4

4724

Candidates answer on the Answer Booklet

OCR Supplied Materials:

- 8 page Answer Booklet
- List of Formulae (MF1)

Other Materials Required: None

Friday 5 June 2009 Afternoon

Duration: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name clearly in capital letters, your Centre Number and Candidate Number in the spaces provided on the Answer Booklet.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer all the questions.
- Do **not** write in the bar codes.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are reminded of the need for clear presentation in your answers.
- The total number of marks for this paper is 72.
- This document consists of 4 pages. Any blank pages are indicated.

- 1 Find the quotient and the remainder when $3x^4 x^3 3x^2 14x 8$ is divided by $x^2 + x + 2$. [4]
- 2 Use the substitution $x = \tan \theta$ to find the exact value of

$$\int_{1}^{\sqrt{3}} \frac{1 - x^2}{1 + x^2} \, \mathrm{d}x.$$
 [7]

- 3 (i) Expand $(a + x)^{-2}$ in ascending powers of x up to and including the term in x^2 . [4]
 - (ii) When $(1-x)(a+x)^{-2}$ is expanded, the coefficient of x^2 is 0. Find the value of a. [3]
- 4 (i) Differentiate $e^x(\sin 2x 2\cos 2x)$, simplifying your answer. [4]

(ii) Hence find the exact value of
$$\int_0^{\frac{1}{4}\pi} e^x \sin 2x \, dx$$
. [3]

5 A curve has parametric equations

$$x = 2t + t^2$$
, $y = 2t^2 + t^3$.

- (i) Express $\frac{dy}{dx}$ in terms of *t* and find the gradient of the curve at the point (3, -9). [5]
- (ii) By considering $\frac{y}{x}$, find a cartesian equation of the curve, giving your answer in a form not involving fractions. [4]

6 The expression
$$\frac{4x}{(x-5)(x-3)^2}$$
 is denoted by $f(x)$.

(i) Express f(x) in the form $\frac{A}{x-5} + \frac{B}{x-3} + \frac{C}{(x-3)^2}$, where A, B and C are constants. [4]

(ii) Hence find the exact value of
$$\int_{1}^{2} f(x) dx$$
. [5]

- 7 (i) The vector $\mathbf{u} = \frac{3}{13}\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ is perpendicular to the vector $4\mathbf{i} + \mathbf{k}$ and to the vector $4\mathbf{i} + 3\mathbf{j} + 2\mathbf{k}$. Find the values of *b* and *c*, and show that **u** is a unit vector. [6]
 - (ii) Calculate, to the nearest degree, the angle between the vectors $4\mathbf{i} + \mathbf{k}$ and $4\mathbf{i} + 3\mathbf{j} + 2\mathbf{k}$. [3]

- 8 (i) Given that $14x^2 7xy + y^2 = 2$, show that $\frac{dy}{dx} = \frac{28x 7y}{7x 2y}$. [4]
 - (ii) The points L and M on the curve $14x^2 7xy + y^2 = 2$ each have x-coordinate 1. The tangents to the curve at L and M meet at N. Find the coordinates of N. [6]
- 9 A tank contains water which is heated by an electric water heater working under the action of a thermostat. The temperature of the water, θ °C, may be modelled as follows. When the water heater is first switched on, $\theta = 40$. The heater causes the temperature to increase at a rate k_1 °C per second, where k_1 is a constant, until $\theta = 60$. The heater then switches off.
 - (i) Write down, in terms of k_1 , how long it takes for the temperature to increase from 40 °C to 60 °C. [1]

The temperature of the water then immediately starts to decrease at a variable rate $k_2(\theta - 20)$ °C per second, where k_2 is a constant, until $\theta = 40$.

- (ii) Write down a differential equation to represent the situation as the temperature is decreasing.
- (iii) Find the total length of time for the temperature to increase from 40 °C to 60 °C and then decrease to 40 °C. Give your answer in terms of k_1 and k_2 . [8]

[1]

4724 Core Mathematics 4

1	<u>Long Division</u> For leading term $3x^2$ in quotient Suff evid of div process (ax^2 , mult back, attempt sub) (Quotient) = $3x^2 - 4x - 5$ (Remainder) = $-x + 2$ <u>Identity</u> $3x^4 - x^3 - 3x^2 - 14x - 8 = Q(x^2 + x + 2) + R$	B1 M1 A1 A1 *M1	
	$Q = ax^2 + bx + c, R = dx + e$ & attempt ≥ 3 ops. dep	p*M1	If $a = 3$, this $\Rightarrow 1$ operation
	a = 3, b = -4, c = -5	A1	$dep*M1; Q = ax^2 + bx + c$
	d = -1, e = 2	A1	
	<u>Inspection</u> Use 'Identity' method; if $R = e$, check cf(x) of	correct be	fore awarding 2 nd M1
2	Indefinite Integral Attempt to connect dx & d θ	*M1	Incl $\frac{dx}{d\theta}$ or $\frac{d\theta}{dx}$; not $dx = d\theta$
	Reduce to $\int 1 - \tan^2 \theta (d\theta)$	Al	A0 if $\frac{d\theta}{dx} = \sec^2 \theta$; but allow all following
			A marks
	Use $\tan^2 \theta = (1,-1) + (\sec^2 \theta, -\sec^2 \theta)$ dep	p*M1	
	Produce $\int 2 - \sec^2 \theta (d\theta)$	A1	
	Correct $\sqrt{1}$ integration of function of type $d + e \sec^2 \theta$	$\sqrt{A1}$	including $d = 0$
	EITHER Attempt limits change (allow degrees here)	M1	(This is 'limits' aspect; the
OR	Attempt integ, re-subst & use original $(\sqrt{3},1)$		integ need not be accurate)
	$\frac{1}{6}\pi - \sqrt{3} + 1$ isw Exact answer required	A1	
		7	
	6		

Mark Scheme

June 2009

3	(i)	$\left(1+\frac{x}{a}\right)^{-2} = 1+\left(-2\right)\frac{x}{a}+\frac{-23}{2}\left(\frac{x}{a}\right)^{2}+\dots$	M1	Check 3 rd term; accept $\frac{x^2}{a}$
		$= 1 - \frac{2x}{a} + \dots \text{or} 1 + \left(-\frac{2x}{a}\right)$	B1	or $1 - 2xa^{-1}$ (Ind of M1)
		+ $\frac{3x^2}{a^2}$ + (or $3(\frac{x}{a})^2$ or $3x^2a^{-2}$)	A1	Accept $\frac{6}{2}$ for 3
		$(a+x)^{-2} = \frac{1}{a^2} \left\{ \text{their expansion of } \left(1+\frac{x}{a}\right)^{-2} \right\} \text{ mult out}$	√A1 4	$\frac{1}{a^2} - \frac{2x}{a^3} + \frac{3x^2}{a^4}$; accept eg a^{-2}
	(ii)	Mult out $(1-x)$ (their exp) to produce all terms/cfs(x^2)	M1	Ignore other terms
		Produce $\frac{3}{a^2} + \frac{2}{a} (= 0)$ or $\frac{3}{a^4} + \frac{2}{a^3} (= 0)$ or AEF	A1	Accept x^2 if in both terms
		$a = -\frac{3}{2}$ www seen anywhere in (i) or (ii)	A1 3	Disregard any ref to $a = 0$
			7	
4	(i)	Differentiate as a product, $u dv + v du$	M1	or as 2 separate products
		$\frac{d}{dx}(\sin 2x) = 2\cos 2x \underline{\text{or}} \frac{d}{dx}(\cos 2x) = -2\sin 2x$	B1	
		$e^{x}(2\cos 2x + 4\sin 2x) + e^{x}(\sin 2x - 2\cos 2x)$	A1	terms may be in diff order
		Simplify to $5e^x \sin 2x$ www	A1 4	Accept $10e^x \sin x \cos x$
	(ii)	Provided result (i) is of form $k e^x \sin 2x$, k const		
		$\int e^x \sin 2x dx = \frac{1}{k} e^x \left(\sin 2x - 2 \cos 2x \right)$	B1	
		$\left[e^{x}\left(\sin 2x - 2\cos 2x\right)\right]_{0}^{\frac{1}{4}\pi} = e^{\frac{1}{4}\pi} + 2$	B1	
		$\frac{1}{5}\left(e^{\frac{1}{4}\pi}+2\right)$	B1 3	Exact form to be seen
		SR Although 'Hence', award M2 for double integration	by parts	and solving + A1 for correct answer.

5 (i) $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$ aef used M1 $=\frac{4t+3t^2}{2+2t}$ A1 Attempt to find *t* from one/both equations M1 or diff (ii) cartesian eqn \rightarrow M1 A1 subst (3, -9), solve for $\frac{dy}{dx} \rightarrow M1$ State/imply t = -3 is only solution of both equations A1 5 grad of curve = $-\frac{15}{4} \rightarrow A1$ Gradient of curve = $-\frac{15}{4}$ or $\frac{-15}{4}$ or $\frac{15}{-4}$ [SR If t = 1 is given as solution & not disqualified, award A0 + $\sqrt{A1}$ for grad = $-\frac{15}{4}$ & $\frac{7}{4}$; If t = 1 is given/used as only solution, award A0 + $\sqrt{A1}$ for grad = $\frac{7}{4}$] (ii) $\frac{y}{r} = t$ B1 Substitute into either parametric eqn M1 Final answer $x^3 = 2xy + y^2$ A2 4 [SR Any correct unsimplified form (involving fractions or common factors) \rightarrow A1] 9 $4x \equiv A(x-3)^2 + B(x-3)(x-5) + C(x-5)$ 6 (i) M1 A = 5A1 'cover-up' rule, award B1 B = -5A1 C = -6A1 4 'cover-up' rule, award B1 Cands adopting other alg. manip. may be awarded M1 for a full satis method + 3 @ A1 (ii) $\int \frac{A}{x-5} dx = A \ln(5-x) \text{ or } A \ln|5-x| \text{ or } A \ln|x-5|$ $\sqrt{B1}$ but <u>not</u> $A \ln(x-5)$ $\int \frac{B}{x-3} dx = B \ln(3-x) \text{ or } B \ln|3-x| \text{ or } B \ln|x-3|$ $\sqrt{B1}$ but <u>not</u> $B \ln(x-3)$ <u>If candidate is awarded B0,B0</u>, then award **SR** $\sqrt{B1}$ for $A \ln(x-5)$ and $B \ln(x-3)$ $\int \frac{C}{(x-3)^2} dx = -\frac{C}{x-3}$ √B1 $5 \ln \frac{3}{4} + 5 \ln 2$ aef, isw $\sqrt{A \ln \frac{3}{4}} - B \ln 2$ $\sqrt{B1}$ Allow if SR B1 awarded $\sqrt{\frac{1}{2}C}$ √B1 5 -3 9 [Mark at earliest correct stage & isw; no ln 1]

7	(i)	Attempt scalar prod $\{\mathbf{u}.(4\mathbf{i} + \mathbf{k}) \text{ or } \mathbf{u}.(4\mathbf{i} + 3\mathbf{j} + 2\mathbf{k})\} = 0$	M1	where u is the given vector
		Obtain $\frac{12}{13} + c = 0$ or $\frac{12}{13} + 3b + 2c = 0$	A1	
		$c = -\frac{12}{13}$	A1	
		$b = \frac{4}{13}$	A1	cao No ft
		Evaluate $\left(\frac{3}{13}\right)^2 + (\text{their } b)^2 + (\text{their } c)^2$	M1	Ignore non-mention of $$
		Obtain $\frac{9}{169} + \frac{144}{169} + \frac{16}{169} = 1$ AG	A1 6	Ignore non-mention of $$
	(ii)	Use $\cos \theta = \frac{x \cdot y}{ x y }$	M1	
		Correct method for finding scalar product	M1	
		36° (35.837653) Accept 0.625 (rad)	A1 3	From $\frac{18}{\sqrt{17}\sqrt{29}}$
	SF	R If $4\mathbf{i}+\mathbf{k} = (4,1,0)$ in (i) & (ii), mark as scheme but allow f	inal A1	for 31°(31.160968) or 0.544
_			9	
8	(i)	$\frac{\mathrm{d}}{\mathrm{d}x}\left(y^2\right) = 2y\frac{\mathrm{d}y}{\mathrm{d}x}$	9 B1	
8	(i)	$\frac{d}{dx}(y^2) = 2y \frac{dy}{dx}$ $\frac{d}{dx}(uv) = u dv + v du \text{ used on } (-7)xy$		
8	(i)		B1 M1	(=0)
8	(i)	$\frac{\mathrm{d}}{\mathrm{d}x}(uv) = u \mathrm{d}v + v \mathrm{d}u \text{used on } (-7)xy$	B1 M1 A1	
8	(i) (ii)	$\frac{d}{dx}(uv) = u dv + v du \text{used on } (-7)xy$ $\frac{d}{dx}(14x^2 - 7xy + y^2) = 28x - 7x \frac{dy}{dx} - 7y + 2y \frac{dy}{dx}$	B1 M1 A1 A1 4	
8		$\frac{d}{dx}(uv) = u dv + v du \text{used on } (-7)xy$ $\frac{d}{dx}(14x^2 - 7xy + y^2) = 28x - 7x \frac{dy}{dx} - 7y + 2y \frac{dy}{dx}$ $2y \frac{dy}{dx} - 7x \frac{dy}{dx} = 7y - 28x \rightarrow \frac{dy}{dx} = \frac{28x - 7y}{7x - 2y} \text{www AG}$	B1 M1 A1 A1 4 M1	As AG, intermed step nec (y = 3 or 4)
8		$\frac{d}{dx}(uv) = u dv + v du \text{used on } (-7)xy$ $\frac{d}{dx}(14x^2 - 7xy + y^2) = 28x - 7x \frac{dy}{dx} - 7y + 2y \frac{dy}{dx}$ $2y \frac{dy}{dx} - 7x \frac{dy}{dx} = 7y - 28x \rightarrow \frac{dy}{dx} = \frac{28x - 7y}{7x - 2y} \text{www AG}$ Subst $x = 1$ into eqn curve & solve quadratic eqn in y	B1 M1 A1 A1 4 M1 M1	As AG, intermed step nec (y = 3 or 4)
8		$\frac{d}{dx}(uv) = u dv + v du \text{used on } (-7)xy$ $\frac{d}{dx}(14x^2 - 7xy + y^2) = 28x - 7x \frac{dy}{dx} - 7y + 2y \frac{dy}{dx}$ $2y \frac{dy}{dx} - 7x \frac{dy}{dx} = 7y - 28x \rightarrow \frac{dy}{dx} = \frac{28x - 7y}{7x - 2y} \text{www AG}$ Subst $x = 1$ into eqn curve & solve quadratic eqn in y Subst $x = 1$ and (one of) their y -value(s) into given $\frac{dy}{dx}$	B1 M1 A1 A1 4 M1 M1	As AG, intermed step nec (y = 3 or 4) $\left(\frac{dy}{dx} = 7 \text{ or } 0\right)$
8		$\frac{d}{dx}(uv) = u dv + v du \text{used on } (-7)xy$ $\frac{d}{dx}(14x^2 - 7xy + y^2) = 28x - 7x \frac{dy}{dx} - 7y + 2y \frac{dy}{dx}$ $2y \frac{dy}{dx} - 7x \frac{dy}{dx} = 7y - 28x \rightarrow \frac{dy}{dx} = \frac{28x - 7y}{7x - 2y} \text{www AG}$ Subst $x = 1$ into eqn curve & solve quadratic eqn in y Subst $x = 1$ and (one of) their y -value(s) into given $\frac{dy}{dx}$ Find eqn of tgt, with their $\frac{dy}{dx}$, going through (1, their y) Produce either $y = 7x - 4$ or $y = 4$	B1 M1 A1 A1 4 M1 M1 *M1	As AG, intermed step nec (y = 3 or 4) $\left(\frac{dy}{dx} = 7 \text{ or } 0\right)$

4724

10

9	(i)	$\frac{20}{k_1}$ (seconds)	B1 1	
	(ii)	$\frac{\mathrm{d}\theta}{\mathrm{d}t} = -k_2\left(\theta - 20\right)$	B1 1	
	(iii)	Separate variables or invert each side	M1	Correct eqn or very similar
		Correct int of each side $(+ c)$	A1,A1	for each integration
		Subst $\theta = 60$ when $t = 0$ into eqn containing 'c'	M1	or $\theta = 60$ when $t =$ their (i)
		$c (\text{or} - c) = \ln 40 \text{ or } \frac{1}{k_2} \ln 40 \text{ or } \frac{1}{k_2} \ln 40 k_2$	A1	Check carefully their 'c'
		Subst their value of <i>c</i> and $\theta = 40$ back into equation	M1	Use scheme on LHS
		$t = \frac{1}{k_2} \ln 2$	A1	Ignore scheme on LHS
		Total time = $\frac{1}{k_2} \ln 2 + \text{their}(i)$ (seconds)	√A1 8	
	SR I	f the negative sign is omitted in part (ii), allow all marks	in (iii) wi	th ln 2 replaced by $\ln \frac{1}{2}$.
	SR I	f definite integrals used, allow M1 for eqn where $t = 0$ and	nd $\theta = 60$	correspond; a second M1 for eqn where

t = t and $\theta = 40$ correspond & M1 for correct use of limits. Final answer scores 2.

10